EXPLICIT CONSTRUCTION OF OPERATOR SCALING GAUSSIAN RANDOM FIELDS
نویسندگان
چکیده
منابع مشابه
Explicit construction of operator scaling Gaussian random fields
We propose an explicit way to generate a large class of Operator scaling Gaussian random fields (OSGRF). Such fields are anisotropic generalizations of selfsimilar fields. More specifically, we are able to construct any Gaussian field belonging to this class with given Hurst index and exponent. Our construction provides for simulations of texture as well as for detection of anisotropies in an i...
متن کاملMulti-operator Scaling Random Fields
In this paper, we define and study a new class of random fields called harmonizable multi-operator scaling stable random fields. These fields satisfy a local asymptotic operator scaling property which generalizes both the local asymptotic self-similarity property and the operator scaling property. Actually, they locally look like operator scaling random fields whose order is allowed to vary alo...
متن کاملGaussian fields satisfying simultaneous operator scaling relations
Random fields are a useful tool for modelling spatial phenomenon like environmental fields, including for example, hydrology, geology, oceanography and medical images. Many times the chosen model has to include some statistical dependence structure that might be present across the scales. Thus, an usual assumption is self-similarity (see [Lamp62]), defined for a random field {X(x)}x∈Rd on R by
متن کاملParameter estimation for operator scaling random fields
Operator scaling random fields are useful for modeling physical phenomena with different scaling properties in each coordinate. This paper develops a general parameter estimation method for such fields which allows an arbitrary set of scaling axes. The method is based on a new approach to nonlinear regression with errors whose mean is not zero. © 2013 Elsevier Inc. All rights reserved.
متن کاملAn optimality result about sample path properties of Operator Scaling Gaussian Random Fields
We study the sample paths properties of Operator scaling Gaussian random fields. Such fields are anisotropic generalizations of anisotropic self-similar random fields as anisotropic Fractional Brownian Motion. Some characteristic properties of the anisotropy are revealed by the regularity of the sample paths. The sharpest way of measuring smoothness is related to these anisotropies and thus to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractals
سال: 2011
ISSN: 0218-348X,1793-6543
DOI: 10.1142/s0218348x11005208